Computational Methods

Course Code	19IT2501C	Year	III	Semester	Ι
	Inter				
	Disciplinary				
Course Category	Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	C Language
Continuous Internal		Semester End			
Evaluation:	30	Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon	Successful completion of course, the student will be able to	BloomsTaxonomy Level					
CO1	Solve System of equations using direct and iterative methods	L2					
CO2	Solve Boundary and characteristic Value Problems	L2					
CO3	Approximate linear and nonlinear curve using regression analysis	L2					
CO4	Find a numerical solution to partial differential equations	L3					
CO5	Apply finite difference scheme to solve parabolic and hyperbolic partial differential equations						

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO11	PO12	PSO1	PSO2
CO1	3	2					:					2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

UNIT	Contents	Mapped
No.	Contents	COs
I	Introduction to numerical methods applied to engineering problems: Examples ,solving Sets of equations—Matrix notation—Determinants and inversion—Iterative methods—Relaxation methods—Systems of non-linear equations.	CO1
II	Boundary value problems and characteristic value problems: Shooting method– Solution through a set of equations –Derivative boundary conditions– Characteristic value problems.	CO2
III	Curve fitting and approximation of functions: Least square approximation fitting of non-linear curves by least squares – regression analysis- multiple linear regression, non-linear regression.	CO3
IV	Numerical solutions of partial differential equations: Laplace's equations – Representations as a difference equation – Iterative methods for Laplace's equations – Poisson equation – Examples – Derivative boundary conditions – Irregular and non – rectangular grid.	CO4
V	Parabolic partial differential equations: Explicit method— Crank-Nicolson method— Derivative boundary condition— Stability and convergence criteria. Hyperbolic partial differential equations:	CO5

Solving wave equation by finite differences- stability of numerical method—method of characteristics-wave equation in two space dimensions.

Learning Recourse(s)

Text Book(s)

- 1. Steven C. Chapra, Raymond P. Canale "Numerical Methods for Engineers" Tata Mc-Grawhill, Fifth edition.
- 2. Curtis F.Gerald, partick.O.Wheatley,"Applied numerical analysis" Pearson Education -Sixth Edition.2002

Reference Book(s)

- 1. Ward cheney&David Kincaid "Numerical mathematics and computing" Brooks/colepublishingcompany1999,fourthedition.
- 2. Riley K.F.M.P.Hobson & Bence S.J," mathematical methods for physics and engineering" Cambridgeuniversitypress, 1999.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. https://www.nptel.ac.in/courses/111/106/111106112/
- 4. https://www.nptel.ac.in/courses/111/105/111105090/